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The topographic limits of gravitationally bound, rotating sand piles
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Abstract

Rubble pile asteroids can attain shapes that are dramatically different from those of rotating, self-gravitating equilibrium fluids. A new numerical
technique, called “seed growth,” is demonstrated for calculating three-dimensional bodies that are self-gravitating and rotating, and whose every
surface is approximately at a constant angle, φ, with respect to the local horizontal. By altering the configuration of cusps, which are points along a
constant longitude path where the surface angle changes sign but not magnitude, multiple solution shapes that satisfy the condition that all surface
slopes are at a constant angle are possible. Five different cusp configurations are explored here, three of which yield solutions for 20◦ � φ � 30◦.
Rotational effects are explored, and it is found that for some solution shapes, the ratios of their shortest to longest dimensions, c/a, can fall outside
the limits published in the literature for rotating, cohesionless, spheroidal bodies. Solution shapes show some similarities to observed small bodies,
such as the saturnian satellite Atlas, the near-Earth Asteroid 1999 KW4, and some contact binary asteroids.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Many asteroids are likely to be aggregations of collisional
fragments, so-called “gravitational aggregates” (Richardson et
al., 2002). Gravitational aggregates are often called “strength-
less,” however internal friction and interlocking between parti-
cles can maintain topography that is out of hydrostatic equilib-
rium. One can observe that loose piles of aggregated particles,
like sand, have slopes that are maintained at what is called the
angle of repose, φ, where typically 20◦ � φ � 30◦ with respect
to horizontal (Bretz et al., 1992; Buchholtz and Pöschel, 1994).
The purpose of this study is to explore the topographic limits of
a hypothetical asteroid composed entirely of loose sand. What
would a self-gravitating, rotating sand pile look like if every
slope on the surface was at the angle of repose?

Other attempts have been made to establish the shapes of
angle of repose-limited rubble pile asteroids using a variety of
techniques. Withers (2000) attempted to calculate axisymmet-
ric shapes by randomly varying surface profiles of homoge-
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neous shapes until the calculated mean slope angle was near
30◦, with mixed success. Holsapple (2001, 2004, 2007) and
Holsapple and Michel (2006) derived generalized limits of co-
hesionless solid spheroidal and ellipsoidal elastic–plastic bod-
ies using a Mohr–Coloumb yield criterion for the limiting in-
ternal stress state, including the effects of rotation and tidal
forces. Richardson et al. (2005a) used numerical simulations
of aggregates of smooth, rigid, spherical particles and produced
quasi-ellipsoidal aggregates whose dimensions were consistent
with limits derived by Holsapple (2001) for φ = 40◦.

The approach of this paper is to consider the geometrical
problem of calculating uniform density, three-dimensional ob-
jects for which the surface at every point is at an angle φ relative
to the local horizontal as defined by the sum of the gravitational
and centripetal acceleration vectors at that point. To solve this
geometrical problem I have developed an iterative numerical
technique called the “seed growth” technique.

2. The seed growth technique

Consider a body with some arbitrary cross section defined
by the surface ρ = f (ψ, θ), where ρ is the radial distance from
the body’s center of mass, ψ is the longitude, and θ is the co-
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Fig. 1. An illustration of the coordinate system used in this work. The gravi-
tational acceleration vector, g, is calculated along each profile using the seed
body. Each profile follows a single longitude, ψi . For non-rotating bodies, and
for bodies with rotation about the z-axis only, the z-axis is a symmetry axis.

latitude. The problem is to identify the solid bounded by the
surface ρ = f (ψ, θ) that is always at an angle, φ, relative to
the local gravitational horizontal. This can be expressed by the
following equation:

(1)N̂ · ĝeff + cosφ = 0,

where N̂ is the unit normal vector at a point on the surface,
and ĝeff is the effective gravitational unit vector at the same
point, which includes contributions from the gravitational and
the centripetal acceleration vectors. If φ = 0, then Eq. (1) de-
scribes a fluid in hydrostatic equilibrium, and analytical solu-
tions for isolated bodies were found by Maclaurin and Jacobi
(e.g., Chandrasekhar, 1969). For the case where φ �= 0 every-
where, no closed-form analytical solutions are known.

Three-dimensional shapes that are approximate solution to
Eq. (1) can be found using some simplifying assumptions and
an iterative technique I call “seed growth.” The first simplify-
ing assumption I make is to approximate the three-dimensional
body as a finite set of two-dimensional profiles, with each pro-
file confined to a plane containing all lines of constant longi-
tude ψi . Note that when constructing solutions the terms “lat-
itude,” “longitude,” and “pole” of the body are used without
regard to the body’s rotation axis, which can be chosen arbitrar-
ily. An illustration of the coordinate system used here is shown
in Fig. 1. A consequence of this simplifying assumption is that,
for non-rotating solution shapes and for solution shapes rotat-
ing about the z-axis, the solution bodies are axisymmetric about
the z-axis.

Because I am calculating two-dimensional profiles that are
confined to a single plane, the unit tangent vector of the profile
is used instead of the unit surface normal vector of the body,
thereby simplifying the calculation. Instead of using Eq. (1),
the profile slope is constrained with the equation:

(2)T̂ · ĝeff + sinφ = 0.
Equation (2) is not, in general, equivalent to Eq. (1) because
there is no guarantee that a constant longitude path is the “most
uphill” or “most downhill” path on a body. However, in this
work all solution shapes whose longitudinal profiles satisfy
Eq. (2) were found to also satisfy Eq. (1). The position vec-
tor along a two-dimensional ψi profile can be written as the
following vector-valued function:

(3)

Si = ρ(θ,ψi) · [cosψi sin θ · x̂ + sinψi sin θ · ŷ + cos θ · ẑ
]
.

The tangent vector along a two-dimensional profile is therefore:

Ti = cosψi

(
ρ cos θ + dρ

dθ
sin θ

)
x̂

+ sinψi

(
ρ cos θ + dρ

dθ
sin θ

)
ŷ

(4)−
(

ρ sin θ − dρ

dθ
cos θ

)
ẑ.

Beginning with some initial radial distance ρ0, a profile
along the ith longitude is generated by substituting Eq. (4) into
Eq. (2), solving for dρ/dθ , and then numerically integrating
from θ1 = 0 in �θ increments to θm = π . In order to perform
this integration, the effective gravitational unit vector along the
profile must also be known.

The effective gravitational unit vector depends on the shape
of the body, so it cannot be calculated a priori. The seed growth
technique overcomes this limitation by utilizing “seed” bodies
to “grow” solutions iteratively. Iteration begins with an ini-
tial seed shape. The initial seed shape is generated using a
simplified model of the object’s gravitational field where only
the 1/r and rotational components of the potential are con-
sidered, neither of which depends on the shape of the body.
Starting at longitude ψ1 = 0 and marching in �ψ increments
to ψn = 2π − �ψ , new profiles are computed using the shape
of the seed body to calculate the local acceleration unit vector,
ĝeff.

Once all n longitudinal profiles have been calculated, they
are combined to produce an approximate three-dimensional so-
lution shape. The solution shape is made of 2nm − 6 triangular
facets, with facet vertices at either (ρi,j , ρi+1,j , ρi+1,j+1) or
(ρi,j , ρi,j+1, ρi+1,j+1), where ρi,j = ρ(θj ,ψi). The solution
shape after one iteration becomes the seed body for the next,
and iteration continues until either convergence to a shape with
a constant φ surface is achieved or the profile generation fails in
some way. A solution shape is considered converged when the
surface angle of all facets lies within ±1◦ of the target angle, φ.
Profile generation fails either when a singularity develops in
the seed body or the centripetal acceleration becomes greater
than the gravitational acceleration at some point along the pro-
file.

The term “angle of repose” refers to the magnitude of the
slope, but the sign of the slope along a profile can abruptly
change at “cusps.” Cusps can be either point or line cusps and
can be have a “positive” or a “negative” orientation, where a
positive cusp is analogous to the sharp peak of a mound of loose
material whose sides are at the angle of repose, and a negative
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Table 1
Classification of cusp configurations based on number and sign of point and
line cusps

Configuration
name

Point cusps Line cusps Cusp latitudinal
spacing+ – + –

Heart 1 1 0 0 180◦
Donut 0 2 1 0 90◦
Dumbbell 2 0 0 1 90◦
Hourglass 0 2 2 1 45◦
Top 2 0 1 2 45◦

For these configurations, cusps are spaced in equal increments of latitude along
a profile. The corresponding seed profiles generated by these cusp configura-
tions is shown in Fig. 2.

cusp is analogous to the bottom of a pit whose walls are at the
angle of repose. In the coordinate system used here, illustrated
in Fig. 1, a cusp that occurs at one of the poles is a point cusp,
and one that occurs at some other latitude is a line cusp. The
number and placement of cusps is a free parameter, though not
all configurations result in solution shapes. When φ > 0 every-
where, there must be at least two point cusps (one at each pole),
but there can be any number of line cusps. There is no limit to
either the number or configuration of line cusps, therefore there
may be no unique solution to Eq. (1) for any given value of φ

and rotation rate.
The gravitational vector, g, along successive profiles is

calculated numerically using the Fortran code Polygrav (see
Richardson et al., 2005b), which rapidly calculates the gravi-
tational acceleration vector due to the discretized seed shape.
Following Werner (1994), Polygrav uses the Gauss Divergence
Theorem to convert the calculation of the gravitational potential
from a volume integral to a surface integral, assuming that the
body has a uniform density. The effective gravitational vector
is simply geff = g + ac, where ac is the centripetal acceleration
vector.

The Polygrav code was combined with an implementation
of the seed growth technique into a code called Sandyroid that
generates approximate solutions to Eq. (1) subject to the con-
straints mentioned above. Sandyroid also takes advantage of
any symmetries in seed shapes. For an axisymmetric config-
uration, only a single profile is calculated, which is then cloned
for all n longitudes. Also, if the x–y plane is a symmetry plane,
profiles are only calculated from θ = 0 to θ = π/2 and are then
mirrored. At the end of each iteration, Sandyroid also scales
the body to conserve its volume, and, because constant density
is assumed, this automatically conserves its mass. If necessary,
Sandyroid also shifts the center of the coordinate system to co-
incide with the center of mass.

2.1. Non-rotating solutions

Because the number and configuration of cusps is uncon-
strained, only a small subset of possible solutions were ex-
plored. The search for solution shapes was limited to angles
of repose in the range of 20◦ � φ � 30◦ and to five different
cusp configurations. Cusp configurations are classified on the
Fig. 2. Initial non-rotating seed profiles for the five different cusp configurations
that were investigated. The profiles on the left are for φ = 20◦ , and the profiles
on the right are for φ = 30◦ . Density was chosen to be σ = 1500 kg m−3 and
mass was 1013 kg. Circles mark intervals of 1000 m.

basis of type, number, location, and orientation (sign) of cusps.
Table 1 lists the five configurations that were explored for this
work, and Fig. 2 illustrates initial non-rotating seed profiles for
these configurations.

The simplest configuration is “Heart,” which contains point
cusps at both poles. No solutions to Eq. (1) were found for
the “Heart” configuration for φ � 20◦. Adding a line cusp
at θ = 90◦ produced the two configurations “Dumbbell” and
“Donut.” No solutions were found for Dumbbell, but solutions
were found for Donut with φ � 21◦. The two final configura-
tions that were explored were “Top” and “Hourglass,” which
have line cusps at θ = 45◦, 90◦, and 135◦ in addition to the
polar point cusps. Solutions were found for Top with φ � 22◦
and for Hourglass with φ � 28◦. Fig. 3 shows the final pro-
files of these configurations for their highest-angle solutions,
and Fig. 4 shows three-dimensional views of the same solu-
tions.

Fig. 4 demonstrates that the surface angles of the final solu-
tion meshes are within approximately ±1◦ of the target surface
angles. The deviations are primarily due to the discretization
of the solution shapes into meshes of flat triangular facets, and
higher resolution meshes show smaller deviations. Because the
calculation of each point along a profile during an iteration
requires a summation over all facets of the seed mesh, compu-
tation time can quickly become prohibitively expensive as the
resolution is increased.
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Fig. 3. Highest-angle, non-rotating constant surface angle solution profiles for
the three configurations for which solutions were found. Density was chosen to
be σ = 1500 kg m−3 and mass was 1013 kg. Circles mark intervals of 1000 m.
For these non-rotating solutions, the bodies are axisymmetric about the z-axis.

2.2. Rotating solutions

Sandyroid is able to calculate solution shapes with rotation
about the x-, y-, or z-axes. If a solution is found, then the prin-
cipal moments of inertia of the solution shape are calculated
to determine whether or not the chosen axis is a stable rota-
tion axis (the axis of maximum moment of inertia). Because of
the way Sandyroid constructs seeds, and the symmetries of the
cusp configurations chosen for this study, the x-, y-, and z-axes
are also principal axes. Only solutions that have rotation about
a stable axis are considered here.

The first rotational case considered for which solutions were
found is the “Oblate Donut,” which has the same cusp configu-
ration as Donut, but with rotation about the z-axis. By varying
the rotation rate as well as the angle of repose, a direct compar-
ison can be made with Holsapple (2001), who explored equilib-
rium configurations of rubble piles using an internal yield stress
criterion, rather than the purely geometrical criterion chosen
for this study. For comparison with Holsapple’s work, a similar
notation system is adopted, and the two ratios of object dimen-
sions are given as:

α = c/a,

(5)β = b/a,

where the dimensions are defined to be the maximum extent of
the object along a principal axis, and a � b � c.

The results of several Oblate Donut solution shapes deter-
mined by Sandyroid are compared to the equilibrium configu-
rations determined by Holsapple (2001) for oblate spheroids in
Fig. 5. Note that Sandyroid is capable of reproducing a portion
of the classic Maclaurin spheroid curve when given φ = 0◦. For
φ > 0◦ Sandyroid produces a lower value of α for any given ro-
tation rate than the limit derived by Holsapple for his oblate
spheroid solutions.

Because this work considers only the surface geometry
of the solution shapes, there is no guarantee that the inter-
nal stresses of the solution objects are everywhere below the
yield stress of the material. However, Holsapple (2001) as-
sumed smooth ellipsoidal objects without surface features, and
geometrically an angle of repose-limited object cannot be a
smooth ellipsoid because it must have cusps. Because the “sur-
face features” of the objects produced in this work are of a
scale comparable to the sizes of the objects themselves, they
greatly influence the distribution of gravitational forces within
the body, and therefore the ellipsoidal model of the gravita-
tional potential used by Holsapple is not valid for these ob-
jects.

Sets of z-axis rotating solutions to the Top configuration,
called “Oblate Top” were also found. As seen in Fig. 5, these
solutions exhibit some unusual behavior. For the φ = 20◦ case,
the dependence of α on rotation rate is much stronger than it is
for any of the other solutions. For φ = 10◦, all of the solutions
fall well within the shape limits of Holsapple.

For the Hourglass configuration, the body must be rotated
about either its x- or y-axis to achieve stable principal axis
rotation for a wide range of rotation rates. It is more diffi-
cult to parameterize the Hourglass shape, because it is more
like a contact binary than an ellipsoid. In the case of x-axis
rotation, which is equivalent to y-axis rotation, it was found
that as the rotation rate increased, β remained constant while
α decreased. For a range of φ values, the ratio β ≈ 0.94.
The relationship between rotation rate and α for Hourglass
in x-axis rotation is shown in Fig. 5. All Hourglass solutions
fall well within Holsapple’s shape limits, as shown in Fig. 5.
Stable z-axis rotation for Hourglass was observed only for an
extremely narrow range of rotation rates near the peak rota-
tion rate, so z-axis rotation for Hourglass is not considered
here.

Sandyroid was unable to converge on solutions for either
Donut or Top with x- or y-axis rotation. Attempts were also
made to produce Jacobi ellipsoids using Sandyroid by sup-
plying it with highly elongated initial seed shapes and set-
ting φ = 0◦, but these attempts were not successful. The
inability of Sandyroid to produce Jacobi ellipsoids may in-
dicate that some solutions to Eq. (1) are not numerically
stable using the seed growth technique. As Fig. 4 demon-
strates, the shapes that Sandyroid was capable of producing
are objects whose entire surfaces have slopes that are constant
within ±1◦.

3. Comparisons between angle of repose-limited bodies
and observed small bodies

Unlike fluid bodies, gravitational aggregates can maintain
a range of equilibrium shapes. The solution shapes produced
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Fig. 4. Highest-angle, non-rotating constant surface angle solutions for (a) Donut (φ = 21◦), (b) Top (φ = 22◦), and (c) Hourglass (φ = 28◦). Three different
orientations are shown for each of the three configurations, with the top row corresponding to a view of the top of the objects, the bottom row corresponding to a
view of the front of the objects, and the middle row corresponding to an intermediate view. Colors represent the deviation of the surface angle of the facets from the
target surface angle, computed using Polygrav. Each surface mesh contains 56,400 triangular facets.

Fig. 5. Relationship between rotation rate and body aspect ratio. The points represent Sandyroid solutions for several configurations, angles of repose, and rotation
rates. Also plotted are curves of the required angle of internal friction determined by Holsapple (2001) (only the σx = σy < σz branch is shown). The curve for
φ = 0◦ is the classic Maclaurin spheroid, which is partially reproduced by Sandyroid. For each configuration shown here, the most rapidly rotating solution that
Sandyroid was able to calculate is plotted. Profile generation fails either when a singularity develops in the seed body or the centripetal acceleration becomes greater
than the gravitational acceleration at some point along the profile.
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Fig. 6. (a, b) Two views of the saturnian moon Atlas as imaged by the Cassini Imagine Science Subsystem (ISS) narrow angle camera. (c, d) Views of Donut with
no rotation and φ = 21◦ with similar orientation and lighting as the Atlas images. (e, f) Views of Top with no rotation and φ = 22◦ with similar orientation and
lighting as the Atlas images. Atlas images courtesy NASA/JPL-Caltech.
by Sandyroid represent limiting cases. Because the angle of
repose-limited solutions described here are idealized mathe-
matical constructs, some caution is warranted when compar-
isons are made to the shapes of natural bodies. Neverthe-
less, some intriguing similarities can be found between the
shapes presented here and real small bodies that have been ob-
served.

Radar imaging of the near-Earth Asteroid 1999 KW4 re-
vealed that it has an equatorial ridge that is similar to the posi-
tive equatorial cusps found on both Donut and Top (Ostro et al.,
2006). The saturnian satellite Atlas shows a striking similar-
ity to both Donut and Top, especially in the equatorial region,
as shown in Fig. 6. It has been proposed that the equator-
ial region of Atlas is composed of ring material that prefer-
entially falls onto the satellite’s equator (Brahic et al., 2006;
Porco et al., 2006; Thomas et al., 2007). If this is the case, then
the shape of Atlas may indicate that the loose ring material may
be at or near the angle of repose.

The Hourglass bodies somewhat resemble contact binaries.
A comparison of shape models derived from radar of three sus-
pected contact binaries from Neese (2004) to a rotating Hour-
glass body is shown in Fig. 7. While the Dumbbell seed shape
may resemble a contact binary more than the Hourglass solution
shapes, it is important to note that Sandyroid could not converge
on a solution for the Dumbbell configuration over the range of
φ values explored here. However, due to the inability of Sandy-
roid to find valid solution shapes for a particular configuration
even when they are known to exist, it is not known at this time
whether a Dumbbell-like configuration admits angle of repose-
limited solution shapes or not.
4. Summary

A new technique for calculating self-gravitating constant
surface angle objects with rotation called the “seed growth”
method has been demonstrated. A numerical code called Sandy-
roid has been developed to implement the seed growth method.
Sandyroid has produced three classes of constant surface angle
shapes, Donut, Top, and Hourglass. The Oblate Donut solutions
produced in this work have dimensions that fall outside of the
limits derived by Holsapple (2001), except for the φ = 0◦ case
for which both Sandyroid and Holsapple produce solutions con-
sistent with Maclaurin spheroids. Two of the solutions, Donut
and Top, have positive cusps along their equator, and similar
features are seen in the shapes of real bodies such as 1999 KW4
and Atlas.

The shapes produced by Sandyroid are idealized mathemati-
cal constructs that represent limiting cases. These shapes are not
unique, and as the failure of Sandyroid to produce Jacobi ellip-
soids demonstrates, there may be other solution shapes that it is
incapable of producing. Nevertheless, the shapes that are pro-
duced by Sandyroid are robust in the sense that the discretized
solution objects have surfaces that are computed to be at a con-
stant angle relative to their local gravitational vector, within the
limits of mesh resolution.
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